Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
J Pediatr Endocrinol Metab ; 37(4): 371-374, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38345890

RESUMO

OBJECTIVES: To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION: A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS: MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Insuficiência Ovariana Primária , Simportadores , Masculino , Adolescente , Humanos , Feminino , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Diagnóstico Tardio , Insuficiência Ovariana Primária/genética , Transportadores de Ácidos Monocarboxílicos/genética , Translocação Genética , Simportadores/genética
2.
J Hum Genet ; 69(5): 197-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374166

RESUMO

CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.


Assuntos
Deficiências do Desenvolvimento , Epilepsia , Heterozigoto , Hipotonia Muscular , Mutação , Humanos , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Epilepsia/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Masculino , Feminino , Sequenciamento do Exoma , Fenótipo , Pré-Escolar , Splicing de RNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia
3.
Am J Med Genet C Semin Med Genet ; 193(3): e32056, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37654076

RESUMO

Heterozygous ARID1B variants result in Coffin-Siris syndrome. Features may include hypoplastic nails, slow growth, characteristic facial features, hypotonia, hypertrichosis, and sparse scalp hair. Most reported cases are due to ARID1B loss of function variants. We report a boy with developmental delay, feeding difficulties, aspiration, recurrent respiratory infections, slow growth, and hypotonia without a clinical diagnosis, where a previously unreported ARID1B missense variant was classified as a variant of uncertain significance. The pathogenicity of this variant was refined through combined methodologies including genome-wide methylation signature analysis (EpiSign), Machine Learning (ML) facial phenotyping, and LIRICAL. Trio exome sequencing and EpiSign were performed. ML facial phenotyping compared facial images using FaceMatch and GestaltMatcher to syndrome-specific libraries to prioritize the trio exome bioinformatic pipeline gene list output. Phenotype-driven variant prioritization was performed with LIRICAL. A de novo heterozygous missense variant, ARID1B p.(Tyr1268His), was reported as a variant of uncertain significance. The ACMG classification was refined to likely pathogenic by a supportive methylation signature, ML facial phenotyping, and prioritization through LIRICAL. The ARID1B genotype-phenotype has been expanded through an extended analysis of missense variation through genome-wide methylation signatures, ML facial phenotyping, and likelihood-ratio gene prioritization.


Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Masculino , Humanos , Proteínas de Ligação a DNA/genética , Hipotonia Muscular/patologia , Fatores de Transcrição/genética , Face/patologia , Anormalidades Múltiplas/diagnóstico , Micrognatismo/genética , Deficiência Intelectual/patologia , Deformidades Congênitas da Mão/genética , Pescoço/patologia
4.
Neurobiol Dis ; 185: 106259, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573958

RESUMO

The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.


Assuntos
Microcefalia , Degeneração Retiniana , Criança , Humanos , Masculino , Feminino , Animais , Camundongos , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Degeneração Retiniana/genética , Deficiências do Desenvolvimento/genética , Fenótipo
5.
Neurology ; 101(15): e1495-e1508, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643885

RESUMO

BACKGROUND AND OBJECTIVES: RYR1-related myopathies are the most common congenital myopathies, but long-term natural history data are still scarce. We aim to describe the natural history of dominant and recessive RYR1-related myopathies. METHODS: A cross-sectional and longitudinal retrospective data analysis of pediatric cases with RYR1-related myopathies seen between 1992-2019 in 2 large UK centers. Patients were identified, and data were collected from individual medical records. RESULTS: Sixty-nine patients were included in the study, 63 in both cross-sectional and longitudinal studies and 6 in the cross-sectional analysis only. Onset ranged from birth to 7 years. Twenty-nine patients had an autosomal dominant RYR1-related myopathy, 31 recessive, 6 de novo dominant, and 3 uncertain inheritance. Median age at the first and last appointment was 4.0 and 10.8 years, respectively. Fifteen% of patients older than 2 years never walked (5 recessive, 4 de novo dominant, and 1 dominant patient) and 7% lost ambulation during follow-up. Scoliosis and spinal rigidity were present in 30% and 17% of patients, respectively. Respiratory involvement was observed in 22% of patients, and 12% needed ventilatory support from a median age of 7 years. Feeding difficulties were present in 30% of patients, and 57% of those needed gastrostomy or tube feeding. There were no anesthetic-induced malignant hyperthermia episodes reported in this cohort. We observed a higher prevalence of prenatal/neonatal features in recessive patients, in particular hypotonia and respiratory difficulties. Clinical presentation, respiratory outcomes, and feeding outcomes were consistently more severe at presentation and in the recessive group. Conversely, longitudinal analysis suggested a less progressive course for motor and respiratory function in recessive patients. Annual change in forced vital capacity was -0.2%/year in recessive vs -1.4%/year in dominant patients. DISCUSSION: This clinical study provides long-term data on disease progression in RYR1-related myopathies that may inform management and provide essential milestones for future therapeutic interventions.


Assuntos
Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Recém-Nascido , Criança , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Estudos Retrospectivos , Estudos Transversais , Doenças Musculares/epidemiologia , Doenças Musculares/genética , Hipotonia Muscular/patologia , Músculo Esquelético/patologia , Mutação/genética
6.
Trends Mol Med ; 29(10): 783-785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37455236

RESUMO

TBCK syndrome is an autosomal recessive disorder primarily characterized by global developmental delay, hypotonia, abnormal magnetic resonance imaging (MRI), and distinctive craniofacial phenotypes. High variability is observed among affected individuals and their corresponding variants, making clinical diagnosis challenging. Here, we discuss recent breakthroughs in clinical considerations, TBCK function, and therapeutic development.


Assuntos
Doenças Neurodegenerativas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/etiologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Fenótipo
7.
Bol Med Hosp Infant Mex ; 80(Supl 1): 23-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37490694

RESUMO

BACKGROUND: Joubert syndrome is a rare genetic condition with a prevalence of 1:80,000-1:100,000. In most cases, it shows an autosomal autosomal recessive hereditary pattern, although X-linked and autosomal dominant cases have been described. The distinctive characteristic of this syndrome is the malformation at cerebral and cerebellar levels, known as the "molar tooth sign," hypotonia, and delayed neurodevelopment. CASE REPORT: We describe the case of a newborn with transient tachypnea. However, during hospital stay, he showed other clinical signs not corresponding to the admission diagnosis, such as bradycardia, apneas, hypotonia, and alteration in swallowing mechanics. To rule out etiologies of central origin, we conducted a magnetic resonance of the brain and identified the "molar tooth sign," where the pathognomonic sign of Joubert syndrome. CONCLUSIONS: Rare genetic diseases may manifest as early as the neonatal period with non-specific signs. The early diagnosis of Joubert syndrome is reflected in better pediatric follow-up, which impacts its prognosis and the possibility of improving the patient's quality of life with a multidisciplinary management and genetic counseling.


INTRODUCCIÓN: El síndrome de Joubert es una rara condición genética con una prevalencia de 1:80,000 a 1:100,000. En la mayoría de los casos se presenta con un patrón de herencia autosómica recesiva, aunque se han reporatdo casos ligados al cromosoma X y autosómicos dominantes. La característica distintiva de este síndrome es la malformación a nivel cerebral y del cerebelo conocido como el "signo del molar", hipotonía y retraso en el neurodesarrollo. CASO CLÍNICO: Se describe el caso de un recién nacido con taquipnea transitoria del recién nacido; sin embargo, durante su estancia manifestó otros signos que no correspondían con el diagnóstico de ingreso, como bradicardia, apneas, hipotonía y alteración en la mecánica de la deglución. Para descartar etiologías de origen central, se realizó una resonancia magnética cerebral en la que se detectó el "signo del molar", patognomónico del síndrome de Joubert. CONCLUSIONES: Las enfermedades genéticas raras pueden manifestarse desde el periodo neonatal con signos muy inespecíficos. El diagnóstico precoz del Síndrome de Joubert permite un mejor seguimiento pediátrico que impacta en su pronóstico y en la posibilidad de mejorar la calidad de vida del paciente con un manejo multidisciplinario, así como brindar asesoramiento genético.


Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Masculino , Recém-Nascido , Humanos , Criança , Cerebelo/anormalidades , Cerebelo/patologia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Retina/anormalidades , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/etiologia , Hipotonia Muscular/patologia , Qualidade de Vida , Diagnóstico Precoce
8.
Clin Genet ; 104(2): 245-250, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125481

RESUMO

Glycosylphosphatidylinositol-anchored proteins are involved in multiple physiological processes and the initial stage of their biosynthesis is mediated by PIGA, PIGC, PIGH, PIGP, PIGQ, PIGY, and DMP2 genes, which have been linked to a wide spectrum of phenotypes depending on the gene damaged. To date, the PIGP gene has only been related to Developmental and Epileptic Encephalopathy 55 (MIM#617599) in just seven patients. A detailed medical history was performed in two affected siblings with a multiple malformation syndrome. Genetic testing was performed using whole-exome sequencing. One patient presented dysmorphic features, congenital anomalies, hypotonia and epileptic encephalopathy as described in PIGA, PIGQ and PIGY deficiencies. The other one was a fetus with a severe malformation disorder at 17 weeks of gestation whose pregnancy was interrupted. Both were compound heterozygous of pathogenic variants in PIGP gene: NM_153682.3:c.2 T > C(p.?) and a 136 Kb deletion (GRCh37/hg19 21q22.13(chr21:38329939-38 466 066)×1) affecting the entire PIGP gene. Our results extend the clinical phenotype associated to PIGP gene and propose to include it as a novel cause of Multiple Congenital Anomalies-Hypotonia-Seizures syndrome.


Assuntos
Anormalidades Múltiplas , Epilepsia Generalizada , Epilepsia , Hexosiltransferases , Anormalidades Musculoesqueléticas , Humanos , Convulsões/genética , Convulsões/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Fenótipo , Proteínas de Membrana/genética , Hexosiltransferases/genética
9.
Medicina (Kaunas) ; 58(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363484

RESUMO

Background and Objectives: Pathogenic variants of PIGN are a known cause of multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). Many affected individuals have clinical features overlapping with Fryns syndrome and are mainly characterised by developmental delay, congenital anomalies, hypotonia, seizures, and specific minor facial anomalies. This study investigates the clinical and molecular data of three individuals from two unrelated families, the clinical features of which were consistent with a diagnosis of MCAHS1. Materials and Methods: Next-generation sequencing (NGS) technology was used to identify the changes in the DNA sequence. Sanger sequencing of gDNA of probands and their parents was used for validation and segregation analysis. Bioinformatics tools were used to investigate the consequences of pathogenic or likely pathogenic PIGN variants at the protein sequence and structure level. Results: The analysis of NGS data and segregation analysis revealed a compound heterozygous NM_176787.5:c.[1942G>T];[1247_1251del] PIGN genotype in family 1 and NG_033144.1(NM_176787.5):c.[932T>G];[1674+1G>C] PIGN genotype in family 2. In silico, c.1942G>T (p.(Glu648Ter)), c.1247_1251del (p.(Glu416GlyfsTer22)), and c.1674+1G>C (p.(Glu525AspfsTer68)) variants are predicted to result in a premature termination codon that leads to truncated and functionally disrupted protein causing the phenotype of MCAHS1 in the affected individuals. Conclusions: PIGN-related disease represents a wide spectrum of phenotypic features, making clinical diagnosis inaccurate and complicated. The genetic testing of every individual with this phenotype provides new insights into the origin and development of the disease.


Assuntos
Deformidades Congênitas dos Membros , Hipotonia Muscular , Humanos , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Lituânia , Fosfotransferases/genética , Convulsões , Síndrome , Mutação , Linhagem
10.
Mol Biol Rep ; 49(11): 10469-10477, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116096

RESUMO

BACKGROUND: PIGA (PIG class A) gene codes for the PIG-A protein, which is a catalytic subunit of GPI-GlcNAc transferase. GPI-anchored proteins play an important role in the metabolism of mammals. Somatic variants of PIGA genes in bone marrow hematopoietic stem cells often result in paroxysmal nocturnal haemoglobinuria, and the germline PIGA variants cause multiple congenital anomalies hypotonia seizures syndrome 2 (MCAHS2) because of glycosylphosphatidylinositol metabolic abnormalities. METHODS: Whole exome sequencing was performed on peripheral blood sample of the patient with MCAHS2. A novel germline PIGA variant was found, and Sanger sequencing was performed as verification for the variant. After that, we used the keywords to retrieve relevant reports and provided a literature review. RESULTS: A novel hemizygous germline PIGA variant (NM_002641.3:c.971G > A) at exon4 was identified through whole exome sequencing. And it was a highly probable pathogenic variant. Sanger sequencing yielded consistent results. The missense variant cause change of p.(Cys324Tyr) in the transcription product according to the predicted outcomes. CONCLUSION: We reported a case of MCAHS2 caused by a novel PIGA variant. Following a review of the literature, we suggested that MCAHS2 should be considered as a disorder spectrum consisting of core symptoms, multi-system impairment, and premature death. The core symptoms include hypotonia, psychomotor delay, epilepsy (intractable epilepsy mostly) and early death. Core symptoms nearly happened to almost all patients. Meanwhile, MCAHS2 involves a wide range of organ and system impairments with changeable form.


Assuntos
Mutação em Linhagem Germinativa , Hipotonia Muscular , Animais , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Linhagem , Convulsões/genética , Convulsões/patologia , Células Germinativas , Mutação , Mamíferos
11.
Sci Rep ; 12(1): 9686, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690661

RESUMO

Autosomal recessive Cohen syndrome is a neurodevelopmental disorder characterized by postnatal microcephaly, intellectual disability, and a typical facial gestalt. Genetic variants in VPS13B have been found to cause Cohen syndrome, but have also been linked to autism, retinal disease, primary immunodeficiency, and short stature. While it is well established that loss-of-function mutations of VPS13B cause Cohen syndrome, the relevance of missense variants for the pathomechanism remains unexplained. Here, we investigate their pathogenic effect through a systematic re-evaluation of clinical patient information, comprehensive in silico predictions, and in vitro testing of previously published missense variants. In vitro analysis of 10 subcloned VPS13B missense variants resulted in full-length proteins after transient overexpression. 6/10 VPS13B missense variants show reduced accumulation at the Golgi complex in the steady state. The overexpression of these 6/10 VPS13B missense variants did not rescue the Golgi fragmentation after the RNAi-mediated depletion of endogenous VPS13B. These results thus validate 6/10 missense variants as likely pathogenic according to the classification of the American College of Medical Genetics through the integration of clinical, genetic, in silico, and experimental data. In summary, we state that exact variant classification should be the first step towards elucidating the pathomechanisms of genetically inherited neuronal diseases.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Dedos/anormalidades , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação de Sentido Incorreto , Miopia , Transtornos do Neurodesenvolvimento/genética , Obesidade , Degeneração Retiniana , Proteínas de Transporte Vesicular/genética
12.
Clin Genet ; 102(2): 123-129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35443069

RESUMO

Six individuals of consanguineous Bedouin kindred presented at infancy with an autosomal recessive syndrome of severe global developmental delay, positive pyramidal signs, unique dysmorphism, skeletal abnormalities, and severe failure to thrive with normal birth weights. Patients had a profound intellectual disability and cognitive impairment with almost no acquired developmental milestones by 12 months. Early-onset axial hypotonia evolved with progressive muscle weakness, reduced muscle tone, and hyporeflexia. Craniofacial dysmorphism consisted of a triangular face with a prominent forehead and midface hypoplasia. Magnetic resonance imaging (MRI) demonstrated thinning of the corpus callosum and paucity of white matter. Genome-wide linkage analysis identified a single ~4 Mbp disease-associated locus on chromosome 7q21.13-q21.3 (LOD score>5). Whole-exome and genome sequencing identified no nonsynonymous pathogenic biallelic variants in any of the genes within this locus. Following the exclusion of partially resembling syndromes, we now describe a novel autosomal recessive syndrome mapped to a ~4Mbp locus on chromosome 7.


Assuntos
Deficiência Intelectual , Hipotonia Muscular , Cromossomos Humanos Par 3 , Corpo Caloso/patologia , Insuficiência de Crescimento , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Síndrome
13.
BMC Med Genomics ; 15(1): 78, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379233

RESUMO

BACKGROUND: Homozygous or compound heterozygous PRUNE1 mutations cause a neurodevelopmental disorder with microcephaly, hypotonia, and variable brain malformations (NMIHBA) (OMIM #617481). The PRUNE1 gene encodes a member of the phosphoesterase (DHH) protein superfamily that is involved in the regulation of cell migration. To date, most of the described mutations in the PRUNE1 gene are clustered in DHH domain. METHODS: We subjected 4 members (two affected and two healthy) of a consanguineous Iranian family in the study. The proband underwent whole-exome sequencing and a start loss identified variant was confirmed by Sanger sequencing. Co-segregation of the detected variant with the disease in family was confirmed. RESULTS: By whole-exome sequencing, we identified the a start loss variant, NM_021222.3:c.3G>A; p.(Met1?), in the PRUNE1 in two patients of a consanguineous Iranian family with spastic quadriplegic cerebral palsy (CP), hypotonia, developmental regression, and cerebellar atrophy. Sanger sequencing confirmed the segregation of the variant with the disease in the family. Protein structure analysis also revealed that the variant probably leads to the deletion of DHH (Asp-His-His) domain, the active site of the protein, and loss of PRUNE1 function. CONCLUSION: We identified a start loss variant, NM_021222.3:c.3G>A; p.(Met1?) in the PRUNE1 gene in two affected members as a possible cause of NMIHBA in an Iranian family. We believe that the study adds a new pathogenic variant in spectrum of mutations in the PRUNE1 gene as a cause of PRUNE1-related syndrome.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Monoéster Fosfórico Hidrolases , Encéfalo/patologia , Consanguinidade , Humanos , Irã (Geográfico) , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Monoéster Fosfórico Hidrolases/genética
14.
Cerebellum ; 21(4): 525-530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089469

RESUMO

The glycophosphatidylinositol (GPI) anchor pathway plays an essential role in posttranslational modification of proteins to facilitate proper membrane anchoring and trafficking to lipid rafts, which is critical for many cell functions, including embryogenesis and neurogenesis. GPI biosynthesis is a multi-step process requiring the activity of over 25 distinct genes, most of them belonging to the phosphatidylinositol glycan (PIG) family and associated with rare neurodevelopmental disorders. PIGQ encodes the phosphatidylinositol glycan class Q protein and is part of the GPI-N-acetylglucosaminyltransferase complex that initiates GPI biosynthesis from phosphatidylinositol (PI) and N-acetylglucosamine (GlcNAc) on the cytoplasmic side of the endoplasmic reticulum (ER). Pathogenic variants in the PIGQ gene have been previously reported in 10 patients with congenital hypotonia, early-infantile epileptic encephalopathy, and premature death occurring in more than half cases. We detected a novel homozygous variant in PIGQ (NM_004204.5: c.1631dupA; p.Tyr544fs*79) by WES trio-analysis of a male patient with a neurodevelopmental disorder characterized by nonprogressive congenital ataxia, intellectual disability, generalized epilepsy, and cerebellar atrophy. Flow cytometry confirmed deficiency of several GPI-anchored proteins on leukocytes (CD14, FLAER). Clinical features of this case broaden the phenotypic spectrum of PIGQ-related GPI deficiency, outlining the importance of glycophosphatidylinositol (GPI) anchor pathway in the pathogenesis of cerebellar ataxia.


Assuntos
Ataxia Cerebelar , Glicosilfosfatidilinositóis , Ataxia Cerebelar/genética , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação , Linhagem , Convulsões
15.
J Med Genet ; 59(7): 669-677, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321324

RESUMO

BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Genótipo , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/genética , Ubiquitina-Proteína Ligases/genética
16.
Front Endocrinol (Lausanne) ; 12: 723750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539576

RESUMO

Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.


Assuntos
Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/terapia , Hipotonia Muscular/genética , Hipotonia Muscular/terapia , Atrofia Muscular/genética , Atrofia Muscular/terapia , Humanos , Retardo Mental Ligado ao Cromossomo X/mortalidade , Retardo Mental Ligado ao Cromossomo X/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/mortalidade , Hipotonia Muscular/patologia , Atrofia Muscular/mortalidade , Atrofia Muscular/patologia , Fenótipo , Transdução de Sinais/genética , Simportadores/genética , Terapias em Estudo/métodos , Terapias em Estudo/tendências
17.
Sci Rep ; 11(1): 16412, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385517

RESUMO

Cohen syndrome (CS) is a rare syndromic form of rod-cone dystrophy. Recent case reports have suggested that cystoid maculopathy (CM) could affect CS patients with an early onset and high prevalence. Our study aims at improving our understanding and management of CM in CS patients through a retrospective case series of ten CS patients with identified pathogenic variants in VPS13B. Longitudinal optical coherence tomography (OCT) imaging was performed and treatment with carbonic anhydrase inhibitors (CAI) was provided to reduce the volume of cystoid spaces. CM affected eight out of ten patients in our cohort. The youngest patient showed a strong progression of macular cysts from the age of 4.5 to 5 years despite oral CAI medication. Other teenage and young adult patients showed stable macular cysts with and without treatment. One patient showed a moderate decrease of cystoid spaces in the absence of treatment at 22 years of age. Through a correlative analysis we found that the volume of cystoid spaces was positively correlated to the thickness of peripheral and macular photoreceptor-related layers. This study suggests that CAI treatments may not suffice to improve CM in CS patients, and that CM may resolve spontaneously during adulthood as photoreceptor dystrophy progresses.


Assuntos
Dedos/anormalidades , Deficiência Intelectual/patologia , Degeneração Macular/patologia , Edema Macular/patologia , Microcefalia/patologia , Hipotonia Muscular/patologia , Miopia/patologia , Obesidade/patologia , Degeneração Retiniana/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Dedos/patologia , Humanos , Masculino , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Adulto Jovem
18.
Hum Genomics ; 15(1): 44, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256850

RESUMO

BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transtorno Autístico/epidemiologia , Transtorno Autístico/patologia , Elementos Facilitadores Genéticos/genética , Exoma/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Hipotonia Muscular/epidemiologia , Hipotonia Muscular/patologia , Mutação/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Neurônios/patologia
19.
Eur J Med Genet ; 64(9): 104280, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229113

RESUMO

Xia-Gibbs syndrome (XGS) is a neurodevelopmental disorder characterized by intellectual disability, developmental delay, seizures, hypotonia, obstructive sleep apnoea and mild facial dysmorphism. Heterozygosity for loss-of-function variants in AHDC1, encoding the AT-hook DNA binding motif containing protein 1, were discovered in 2014 as the likely genetic cause of Xia-Gibbs syndrome. We present five patients with Xia-Gibbs syndrome caused by previously unreported variants in AHDC1. Two of the patients share a frameshift variant: c.2849del (p.(Pro950Argfs*192)) in AHDC1. Despite sharing this variant, the two patients show remarkable phenotypic differences underscoring the clinical heterogeneity of Xia-Gibbs syndrome. In addition, we present a case of Xia-Gibbs syndrome caused by mosaicism for an AHDC1 variant.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Deformidades do Pé/genética , Hipotonia Muscular/genética , Fenótipo , Adolescente , Adulto , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Deformidades do Pé/patologia , Mutação da Fase de Leitura , Humanos , Masculino , Hipotonia Muscular/patologia , Síndrome , Adulto Jovem
20.
Neurogenetics ; 22(4): 343-346, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34296368

RESUMO

Allan-Herndon-Dudley is an X-linked recessive syndrome caused by pathogenic variants in the SLC16A2 gene. Clinical manifestations are a consequence of impaired thyroid metabolism and aberrant transport of thyroid hormones to the brain. Carrier females are generally asymptomatic and may show subtle symptoms of the disease. We describe a female with a complete Allan-Herndon-Dudley phenotype, carrying a de novo 543-kb deletion of the X chromosome. The deletion encompasses exon 1 of the SLC16A2 gene and JPX and FTX genes; it is known that the latter two genes participate in the X-inactivation process upregulating XIST gene expression. Subsequent studies in the patient demonstrated the preferential expression of the X chromosome with the JPX and FTX deletion.


Assuntos
Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mutação/genética , Inativação do Cromossomo X/genética , Encéfalo/patologia , Criança , Feminino , Humanos , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/diagnóstico , Atrofia Muscular/diagnóstico , Fenótipo , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...